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Abstract

At pressureatioslower thanthe designvalue,
corvergent-dvergert (C-D) nozzlesoften un-
demgo a flow resonanceaccompaniedy the
emissionof acoustictones. The phenomenon,
driven by the unsteadyshock within the di-
vergent sectionof the nozzle, hasbeenstud-
ied experimentallyby Zamanet a[1]. In this
paperthespace-timeonserationelemento-
lution element(CE/SE) method|[2, 3, 4] is
employed to numericallyinvestigatethe phe-
nomenonThecomputationsreperformedor
a given nozzlegeometryfor several different
pressuraatios. Sustainedlimit cycle’ oscil-
lations are encounteredn all cases. The os-
cillation frequenciestheir variationwith pres-
sureratio includinga ‘stagejump’, agreewell
with the experimentalresults. The unsteady
flow dataconfirmthatstagel of theresonance
(fundamentaljnvolvesa one-quartestanding
wave while stage2 (third harmonic)involves
athree-quartestandingwvave within the diver-
gentsectionof thenozzle.Detailsof theshock
motion, and the flow and nearacousticfield,
aredocumentedor onecaseeachof stagesl
and2.

1 Introduction
This paperconcernsan aeroacousticesonanceften
encounterewvith corvergent-dvergentnozzlesvhenrun
near ‘transonic’ conditions. The resonancds usually

accompaniedy the emissionof intenseacoustictones.

While a casualobsener may easily confuseit with the
well-known ‘screechtone’, it hasbeenshown to be dif-
ferentin characteras well as origin. The frequeng
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of the tone increaseswith increasingplenumpressure.
Thefrequeng variationmay involve a stagingbehaior,
i.e., anabruptjump in frequeng. While odd harmonic
stagestake place at lower pressuresthe fundamental
takesplaceover a wide rangeof higherpressuresDe-
pendingon nozzlegeometry the fundamentahasbeen
foundto persistto pressurgatiosashigh as5. Thephe-
nomenorhasbeenidentifiedandstudiedexperimentally
by Zamanetal[1]. For adiscussiorof backgroundtech-
nologicalrelevance andpertinentpastwork from thelit-
erature the readeris referredto the cited reference. A
discussiorof numericalworks from the literatureappar
ently capturingthe samephenomenonandthe implica-
tion of thoseresults,will be deferredto the concluding
remarksin Section5.

During the courseof the experimentalstudya numer
ical studywasinitiatedto complementheinvestigation.
The ‘CE/SE’ method,to be elaboratedshortly, wasem-
ployed becausef its pastsuccesswith flows involving
shocksand acousticwaves[5]. The calculationswere
first performedfor a nozzlegeometryand pressureatio
thatcorrespondetb anexperimentakestcondition. The
resultwasencouragingn thattheflow notonly exhibited
a quasi-periodicitybut the frequeng wasalsoin agree-
mentwith the experimentalresult. Subsequentalcula-
tions at two other pressurecapturedthe right trendin
thefrequeng variationaswell asthe stage-jumpThese
promising resultsprompteda further study This was
deemedwell-justified not only to shedfurther light on
the mechanisnof the phenomenotbut alsoto gaincon-
fidencein the CFD methodology

The ‘Space-Tme Consenration-Element and
Solution-Elemen{CE/SE)Method’ [2,3,4] wasusedas
a numericalplatformin the study As demonstratedh
previous papers,the CE/SE methodis well suited for
computingwavesin compressiblsheaiflows[5] aswell
asvorticity/shockinteractiong[6], both being pertinent
in the phenomenorunder consideration. Furthermore,
basedon the novel CE/SE non-reflecting boundary
conditions (NRBC), it is expectedthat a small near
field computationaldomain would be sufficient and
the simulationcould be focusedon the region of most
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importancdn theresonance.

The objective of this paperis to describethe key re-
sults of the numericalstudy The paperis arranged
asfollows. The axisymmetricCE/SE schemewith an
unstructured-grids discussedn Section2. The initial
and boundaryconditionsas well asthe CE/SENRBC
arediscussedh section3. Thenumericalresultsarepre-
sentedand comparedwith experimentalresultsin Sec-
tion 4, furtherdiscussiorandsummaryaregivenin Sec-
tion 5.

2 The Unstructured Axisymmetric CE/SE
Euler and Navier-Stokes Solvers

In thissectionthe CE/SEnumericalscheméds summa-
rized including (a) the Navier-Stokes CE/SEsolwer, (b)
the unstructuredgrid used,and (c) the treatmentof the
sourcetermandthe 2-D axisymmetricapproximatiorof
LES (large eddysimulation)appliedto thejet flow. The
basicCE/SEprinciple and detailsof the Euler schemes
canbefoundin thecitedoriginal paperq2, 3, 4].

2.1 Conservation Form of the Unsteady
Axisymmetric Navier-Stokes Equations
In generalthe CE/SEmethodsystematicallysolvesa set
of integral equationsderived directly from the physical
consenration laws, and hencenaturally capturesshocks
and other discontinuitiesin the flow. Both dependent
variablesandtheir derivativesare solved for simultane-
ously and, consequentlythe flow vorticity can be ob-
tained without reductionin accurag. Non-reflecting
boundary conditions (NRBCs) are also easily imple-
mentedbecausef theflux-conserationformulation.
Consideradimensionlessonserationform of theun-
steadyaxisymmetricNavier-Stokes equationsof a per
fectgas.Let p, u, v, p, andy bethe density streamwise
velocity component,radial velocity component,static
pressureand constantspecific heatratio, respectiely.
The axisymmetricNavier-Stokes equationghen canbe
written in the following vectorform:
Ui+ F, +Gy =Q, 1)
wherez, y > 0, andt arethe streamwiseandradial co-
ordinatesandtime, respectiely. The conserative flow
variablevectorU andtheflux vectorsin the streamwise
andradialdirections,F' andG, aregivenby:

U1 F1 Gl
_ | U2 _| E _| G2
U= Us |’ F= F; |’ G = Gz |’
U4 F4 G4
with
U= P Us = pu, Us = pY,

Us = p/(y=1) + p(u”® +v%)/2.

2

Theflux vectorsarefurthersplitinto inviscidandviscous
fluxes:
F:Fi_FVJG:Gi_GVJ

wherethe inviscid fluxes are the sameas in the Euler
equations:
Fy = Uy,
Fp = (y = 1)Us+ [3—=7)U; — (y — 1)U3] /204,
Fi3 = UyUs /Uy,
Fu = yUsUs /UL — (v — 1)U [U3 + U3] /2U7,
Gn =Us, G =UsUs/Un,
Gis = (v = Y)Us + [3 = 1)U3 = (v = )U3] /201,
Gia = yUsUs/Us — (y = 1)Us [U3 + U] /2U7,
andtheviscousfluxesare:

F,; =0, 2y.V),

Fy = H(Quz -3
Fv3 = /J’(Uw + uy)a

Fos = p[2uug + (uy + vz)v — 3(V-V)u+

lﬁ(% _ M)]
Proy U, 2 ’
le = 07 Gv2 = H(Uz + Uy),

Guz = p(2vy — 2V-V),

Gus = p[20vy + (uy + vy)u — 2(V-V)o+
oy
whereu, v, uz, uy, vz, vy arerespectrely thex— andy—

flow velocity componentsand their derivatives. They

can be written in terms of the consenrative variables
Ui, Us,,Us andU,. Pr is the Prandtinumberandy the
viscosity Thevelocity divergence

V-V =u, + vy +0/y.

The right handsourceterm @ is the sameasin the
axisymmetricEulerequationg7]:

Q1
_ | @
Q= Qs |’
Q4
where
Q1 =-Usly, Q2= —-UUs/Upy,
Qs =-U3 /Uy, Qi=—Ga/y.

By considering(z,y,t) as coordinatesof a three-
dimensionaEuclidearspacef; andusingGauss'diver-
gencetheoremit followsthatEg. (1) is equivalentto the
following integral conserationlaw:

Hm-dS=/deV, m=1,2,3,4, (2)
S(V) v

where S(V') denoteshe surfacearounda volumeV in
Es;andH,,, = (Fy, Gy Upp).
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2.2 Unstructured Grid for CE/SE

The CE/SEschemds naturallyadaptedo unstructured
triangulargrid. The unstructuredsersionof the CE/SE
schemecan be briefly describedusing Fig. 1. Here,
AABC is a typical triangularcell centeredat O, and
D, E, F are the centersof the neighboringtriangular
cells wherethe flow dataat the previous time stepare
given. Eachtriangle centerand its three neighboring
trianglecentersform threecylindrical quadrilateraton-
senation elementsor CE's, asshowvn in Fig. 1. In the
space-timei; space(2) is appliedto thehexagoncylin-
der ADBECF ( thevolumeV) thatconsistof these3
quadrilateralC E's. The discreteapproximatiorof (2) is
then

H,, -dS= V(Qm)?_’_l: (3)

S5(V)
form = 1,2,3,4, whereH; = (F},G:,U}). The
right-handsideof (3), in generaljs thevolumeV times
the ‘source’ term evaluatedat an appropriategaussian
guadraturenode. Here, the gaussiamuadraturenodeis
the centerof the hexagon ADBECF at the new time
level.

In the CE/SE scheme,the above flux conseration
relation (2) in space-times the only mechanisnthat
transferanformationbetweemodepoints. A consera-
tion elementC'E (here,quadrilaterakylinders)is thefi-
nite volumeto which (2) is applied. Discontinuitiesare
allowed to occurin the interior of a conseration ele-
ment. A solution elementSE associatedvith a grid
node(eg., D,E,F in Fig. 1) is herea setof inter
face planesin Fs5 that passeghrough this node (e.g.
DAA'D',DBB'D',EBB'E',ECC'E' etc.).

At time level n, thesolutionvariablesU, U, andU ,,
aregiven at thesethreenodes. We areto sohve U, U,
andU, atO' atthenew time leveln + 1.

In principle,eachof the3 C E's provides4 scalarequa-
tionswhen(2) is appliedtoit. Therearetotally 12 scalar
equationdor the 12 scalarunknovnsatO’. Theproblem
is solvable. All the unknawvns are solved for basedon
theserelations.No extrapolationginterpolationsjacross
a stencil of cells are neededor allowed. But in reality,
U atthe hexagoncenterat the new time level n + 1 is
first evaluatedfrom (3) andthen by Taylor expansion,
U at the centerO’ of triangle ABC' can be obtained.
ConsequentlyU, andU ,, aresolvedwith thenecessary
numericaldissipationadded Detailscanbefoundin [4].

An importantissueis how to accuratelycalculatethe
surfacefluxesof the SEs. For this purpose,within a
givensolutionelementSE(j, n), wherej, n arethenode
index, andtime steprespectrely, the flow variablesare
not only consideredcontinuousbut are also approxi-
matedby linear Taylor expansions:

U +

U*(z,y,t;j,n) = Uj

Ua)j (& — zj)+

3

A

time level n

hexagon cylinder AD BECFA - AD'B'E'C'F 'A’ and
its 3 CEs, OADB-O'A 'D'B’, OBEC-O'B'’E'C ’,
OCFA - OCFA’

Figurel: CE/SEunstructuredyrid

(Uy)j(y —y;) + (Ut —t"), 4
F*(z,y,t;j,n) = F} + (F3)}(z — )+

(Fy)i(y —y;) + (Fu)j (¢ —t"), ®)
G*(z,y,t;:j,n) = G} + (Go)j (z — z;)+

(Gy)}(y —y;) + (Gy)F(t —t"), (6)

wherej is the nodeindex of D, E or F. The partial

derivativesof F' andG canberelatedto thecorrespond-
ing derivativesof U by usingthechainrule,andU, can

be obtainedfrom (1). Now, the surfaceflux canbe cal-

culatedaccuratelyby first evaluatingthe flux vectorsat

the geometricakenterof the surfacethroughthe Taylor

expansions(4-6). With unstructuredgrids, the CE/SE
procedurds simplifiedandmoreadaptedo complicated
geometry Only a singlesetof meshpointsis neededas

comparedo the spatiallystaggeredneshfor structured
grids and the time-marchingis completedin one step
ratherthantwo. Also, the simple non-reflectingoound-
ary conditionsdescribedpreviously [5 - 8] still work

well with an unstructuredgrid. More detailsaboutthe

unstructuredCE/SE methodcan be found in [4]. The

weighteda — ¢ CE/SEschemas usedhere.

2.3 Treatment of the Source Term

The treatmentis identical to the one usedin [7] andis

briefly reiteratedhere. As the sourceterm@Q = Q(U)

itself is a function of the unknowvn U at the new time
level, a local iterative procedurds neededo determine
U. Thediscretizedintegral equation(3) reduceso the
form

U-QU)At=Ug, ()
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whereU g is the local homogeneousolution (i.e. the
solutionfor @ = 0 locally). Note thatU g only de-
pendson the solutionat the previoustime step,i.e. Uy
is obtainedusingexplicit formulas. A Newton iterative
procedureo determindl is then

i iy _ (9%, i
U(H):U()—(a—U) eU®)-Un,

wheres is theiterationnumberand
d(U)=U — Q(U)At.

Normally, U at the previoustime stepis a goodinitial
guessU(®) andthe procedureakesabout2-3 iterations
to corvergence.

2.4 Large Eddy Simulation (LES)

A simplified LES proceduresimilar to thoseusedin [9]
is adoptechereto accountfor the strongmomentumnmex-
changein the jet shearlayer outsidethe nozzle. In this
2-D approximatiorof LES, asimpleSmagorinsi’ssub-
grid scalemodelis usedfor the eddyviscosity:

e = (CsA)?(28;8:)' 2,
where
6Ui 8’LLJ'
8:17]' 81’1

A = (AzAy)/2, C, =0.1. Theny; + p repalcesu
in the Navier-StokesCE/SEsolver.

Sij = 5( )

3 Computational Domain, Initial and
Boundar y Conditions

As statedearlier anaxisymmetric2-D CE/SENavier-
Stokes solver was used. It shouldbe notedthat ‘high
Reynoldsnumber’,‘inviscid’ calculationswverefirst per
formedfor the nozzleinternalflow (thatis, u wassetto
zerofor the viscousflux termsin the governingequa-
tions, Section2). With a uniform flow atthe nozzleinlet
andno-slipconditiononthewall, trunctionandotherer-
rors in the numericalprocessimposeda viscouseffect
andtherewasa boundarylayer growth dueto this ‘nu-
mericalviscosity’. Physicalviscositywaslater applied
to simulatedifferentReynoldsnumbersasdiscussedat
the end of Section4. The 2-D approximationof LES
(Section2.4) wasappliedto the flow outsidethe nozzle
in orderto properlysimulatethefreejet. Thecalculation
for thenozzlesinternalflow shouldbedeemednorerel-
evantin the presenstudy

The computeddomainstartedat the inlet of the con-
vergentsectionof the nozzleasshawn in figure 2. The
domainextendedover a rectangularsubdomairoutside
the nozzle(21.5inch in axial directionx 16 inchin ra-
dial direction;seefigure3). Thecomputatiorwasstarted
with the entireflow at restandwith the desiredplenum

4

C-D nozzle

y=.75 —.45x**2 +.15x**3

straight line

Figure2: Geometryof the C-D nozzleandunstructured
grid

pressureappliedattheinlet boundary A no-slip bound-
ary conditionwasimposedon the nozzlewall. For the
outer subdomain,ambient conditions were applied at
the upstreaninflow boundary non-reflectve conditions
were applied at the upperand downstreamboundaries,
while a mirror-imagereflectve (symmetryaxis) condi-
tion wasappliedat the bottomboundary

The geometryof the nozzle canbe seenin figure 2.
Theinlet diameteiis 1.5”. Thediametersatthenozzles
throatand exit arerespectiely D, = 0.3” andD, =
0.4”. Thethroatis located2” downstreamof the inlet.
The corvergentpartfollows a curved contourr = f(x)
asnotedin thefigure,while the contourof thedivergent
partis astraightline. Thegeometrycorrespondso Case
‘372" describedn [1].

In the experimentsit hasbeenshowvn that the origin
of theresonancés internalto thenozzle(unlike screech-
tones).Thus,thenumericainvestigatiorconcentratesen
theinterior flow of thenozzleandthenearfield. Further
more,theflow andtheacoustidieldshave beenfoundto
be of theaxisymmetrionodein theexperimentsHence,
the axisymmetricCE/SE code has beendeemedsuffi-
cient, at leastas a first attempt,in computingthe flow.
Theambientflow aroundthe nozzleis assumedtation-
ary.

For corveniencea = 1” is choserasthelengthscale.
(However, the throat-to-it length, L = 0.75”, is used
to nondimensionalizelatain someof the figuresto be
commensurateith the experiment.)The computational
domainis a circular cylinder of 24.5a long and 16a in
radius.Theunstructuredyrid is formedby cuttingarect-
angularcell into 4 triangles). Theserectangulacellsare
non-uniformandtheir numbersn thex andy directions
are 200 and 225, respectiely. In a typical case,total
numberof trianglesis 114,000. The last 10 cellsin the
streamwisalirection have exponentiallygrowing z size
andsene asa buffer zoneto ensureno numericalreflec-
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C-D
Nozzle

sym. axis

24.5a

Figure3: Geometryof the entire computationatlomain
andunstructuredyrid.

tion from the outflow boundary The grid resolutionwas
deemedsufficientsincea coarsegrid producedhesame
resultsasdiscusseahortly. The CE/SEschemas of the
a-€ type[3,4] with a = 0 ande = 0.5.

3.1 Initial Conditions

Thepressurg; andthespeedf sounda; in theambient
flow areusedto scalethe dependenvariables.Initially,

theflow of theentiredomainis setat theambientcondi-
tions,i.e,

pi=v=14, u; =0,

Notethatp; = 1 correspondso a dimensionalpres-
sureof 14.4 psi in the experiments. Consequentlythe
consenative flow variablesandtheir spatialderivatives
can be obtainedin an easyway. |Initially, all spatial
derivativesaresetto zero.

3.2 Boundar y Conditions

At theinflow boundaryoutsidethe nozzle theconsena-
tive flow variablesandtheir spatialderivativesarespeci-
fied to be the sameasthe ambientflow. Theinlet of the
C-D nozzleis connectedo the plenumwhich provides
a constantpressurep = p, to drive the flow. Accord-
ing to the experimentalconditions,5 differentp, values
(4, 8, 10, 15 and 20 psig) are chosenin the computa-
tion. The actualnon-dimensionapy valuesarerespec-
tively 1.277778,1,555556,1.6944444,2.0416667 and
2.3888889.

Following theexperimentatondition,thetemperature
in the plenumis assumedo be equalto thatin the ambi-
ent. By usingthe assumptionsf constantotal enthalgy
andisentropicflow, it follows thatthe densityp; at the
nozzleinletis relatedto theambientpressure; andden-
sity p; by
Po
—Pi-
bi

po =

5

Flow atthenozzleinletis atrest:
Ug = Vg = 0.

No artificial forcing is imposedarnywhere.As statedear

lier, no slip conditionis appliedat the nozzlewalls. At

the symmetryaxis,i.e. y = 0, reflectve boundarycon-
dition is applied. At thetop andoutflow boundariesthe
Typel andType Il CE/SEnon-reflectingooundarycon-
ditions asdescribedn the next subsectiorareimposed
respectiely.

3.3 Non-Reflecting Boundar y Conditions
In the CE/SE scheme,non-reflectingboundarycondi-
tions (NRBC) areconstructedoasto allow fluxesfrom
the interior domainto a boundaryC' E smoothlyexit to
the exterior of the domain. Thereare variousvariants
of the non-reflectingboundaryconditionandin general
they have provento bewell suitedfor aeroacoustiprob-
lems[5-7]. Thefollowing arethe onesemployedin this
paper

For a grid node(j,n) lying at the outerradiusof the
domainthenon-reflectveboundarycondition(typel) re-
quiresthat

(Ua)}

7 = (Uy);b = 05

while U7} is keptfixedattheinitially givensteadyoound-
ary value. At the downstreamboundary where there
aresubstantiagradientsn theradial direction,the non-

reflectve boundarycondition(typell) requireshat
(Uz)? =0,

while U7} and(U )7 arenow definedby simpleextrap-
olationfrom thenearestnterior nodej’, i.e.,

W)} =W,);"

As will be obsened later, these NRBCs are robust

enoughto allow a nearfield computationwithout dis-
turbingor distortingthe flow andacoustidfields.

_ rrn—1/2

4 Results

The calculationswerecarriedout until a ‘limit cycle’
oscillationin the flow field was reached. At this state
the flow propertyat a given point in the computational
domainwould undego a quasi-periodioscillationwith
varyingtime. The pressureoscillationat a given point
in the computationatlomainfor the pg =1.694(10 psig)
caseis shawn in figure 4. The underlying periodicity
in the time history shouldbe apparentuponan inspec-
tion. The power spectrumcorrespondindo the dataof
figure4, shovnin figure5, illustratesthe periodicityun-
ambiguously The spectrumis clearly characterizetby a
peakatafrequeng of about2600Hz. A largenumberof
time stepg(410,000to 740,000)hadto berunin orderto
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Figure4: Time history of pressurefluctuationat x/L =
0.667,y/L = 2.66.

achieve appropriateesolutionon the low frequeng end
of thespectrum.

Also showvn in figure 5 is the power spectrumdensity
(PSD)calculatedat approximatelythe samelocationus-
ing a coarsergrid (80,000cells). The amplitudeof the
peakis somavhat differentfrom that for the fine grid.
This is not unexpectedsincethe phenomenoiis not ex-
actly periodicandthe physicallocationsare not exactly
the same.However, it is clearthat the frequeng of the
peakis the same.Thus,thefine grid resolution(114,000
cells)maybeconsiderechdequate.

Theoscillationcouldbedetectedasicallyeverywhere
in the computationablomain(althoughin regionscorre-
spondingo ‘nodes’the pressurescillationmight notbe
clear). The p’-spectrumobtainedfrom dataat a different
pointis shovnin figure6, asanotherexample.Exceptfor
somedifferencein the higherfrequeng peaksthe over-
all spectrumandthe dominantpeakremainsunchanged.
Notethatthe datain figure 5 representearfield acous-
tic pressurdoutsidethenozzle)whereaghosein figure6
represenpressurescillationwithin the coreof theflow.
Theflow oscillationfrequenciesredeterminedn asim-
ilar mannerthrough spectralanalysisfor all five oper
ating pressures. Thesefrequenciesare comparedwith
experimentaldatain figure 7.

Here, let us first briefly summarizethe experimental
results(Zamanetal. [1]). Thefrequeng datawereob-
tainedby spectralanalysisof a microphonesignal. The
datainclude ‘screech’ tonesas well as the ‘transonic
tones’,asmarkedin thefigure. The latter phenomenon
is the subjectunderconsideration.Note that thereis a
stagingbehaiior with the transonictones. Two stages,
marked in the figure, are detectedwith the nozzleun-
derconsiderationFromananalysisof datafrom alarge
numberof nozzles,it wasinferredthat stage(1) repre-

6

3.0E-06

2.0E-06

boeend 2

0.0E+00

TR TR SR SN S SR
1.0E+04 1.5E+04 2.0E+04

f (Hz)

P TR T T
0.0E+00 5.0E+03

Figure5: Power spectraldensityof fluctuatingpressure
atx/L =0.667,y/L =2.66.Solidline: fine grid (114,000
cells),dottedline: coarsegrid (80000cells).

2.4E-04

1.6E-04

[
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a
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)
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1.0E+04 1.5E+04 2.0E+04
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Figure6: Power spectraldensityof fluctuatingpressure
within thecorvergentsectionatx/L =-0.667,y/L = 0.20.
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Figure 7: Variation of tonefrequeng with A£; . Open
symbols: experimentaldata(for nozzle3T2; Zamanet
al. [1]), Solid symbols:presennhumericalresults.

sentedthe fundamentain the resonancevhile stage(2)
representedhe next odd (3rd) harmonic. It wasfound
thatthe presencef a shockwithin the upstreanreaches
of thedivergentsectionwasa necessargonditionfor the
resonanceo take place.A physicalmodelfor theunder
lying mechanisnwas proposed.In short, the unsteady
shockwasthoughtto actlike a vibrating diaphragmand
resonancéook placein a mannersimilar to that occur
ring in the simple(no-flow) acoustiacesonancef acon-
ical sectionwith oneendopenandthe otherendclosed.
Thus, the fundamentalas expectedto involve a one-
guarter(wavelength)standingwave within the diverg-
ing sectionwhile the next (third) harmonic(stage?) was
expectedto involve a three-quartestandingwave. Un-
steadyflow measurementdid indicatethe presenceof
such standingwaves. However, the latter obsenation
was not on firm ground becauseof the possibility of
probeinterferenceeffects.

In figure 7, the numericalresultsfor the resonanfre-
guenciesare shavn by the solid symbols. The results
agreewith theexperimentaldatavery well. Not only the
trend of frequeng variationwithin eachstage,andthe
staggump, arecapturecbut alsothefrequenciesrepre-
dictedquitewell.

Detailsof the flow field werecomputedor two pres-
sures,pg =1.278and 1.694, correspondingo stage(2)
andstage(1) resonanceaespectiely. Thestaticpressure
distributions are shawvn in figure 8 for the fundamental
caseat pg =1.694. The 11 framesspanapproximately
2T, T beingthe periodof the oscillation. Thus,approx-
imately on the 6th framethe periodis completedanda
similar distribution is expectedasin the 1stframe. This

7

2 8
i e
3 9
B L
4 10

0.465

0874 1284 1693

Figure8: Detailedflow-field pressuralatafor thefunda-
mentalcaseat 10 psig (stagel).

is indeedthe caseas canbe seen. NumericalSchlieren
pictures(i.e., distributions of %), correspondingo the
instantsof figure 8, areshawvn in figure 9. Theseillus-
tratethe unsteadyshockstructureandits motion within
the period. A shock(denotedby the boundarybetween
the yellow/red andblue/greerregions) canbe seenpast
thethroatof the nozzle. The shapeandstructureof the
shockchangesvidely overthe period. During partof the
cycle, a clear ‘bow-shaped’front is seen(frames1,6).
During otherpartsof the cycle a ‘lambda-shockis seen
clearly (frame2,7). Yet during otherpartsof the cycle,
multiple frontsarenoted.Correspondinglistributionsof
theaxial velocity (U) areshavnin figure 10. A flow sep-
arationdownstreanof thethroatof thenozzlecanbeob-
sened. Thelengthof the separatedlow region changes
overtheperiod.

Flow field detailsfor thepg = 1.278(stage2) caseare
shavnin figures11-13,in asimilar mannerasin figures
8-10.Here,anapproximataepetitionof theflow pattern
everysixthframecanalsobeobsened.However, it is not
asclearasin thecaseof thefundamentalln ary casethe
completionof the period can be inferred, for example,
by following the yellow patchof high-pressureegionto
the right of the nozzleexit in figure 11. It propagates
downstreamwith increasingime step,until in the sixth
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Figure9: DetailednumericalSchlierendatafor the fun-
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Figurel0: Detailedflow-field u-velocity datafor thefun-
damentataseat 10 psig(stagel).
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Figure11: Detailedflow-field pressuradatafor the case
at4 psig(stage2).

framea patternsimilar to thatin frame1 reappears.

Referring back to the Schlierenpicturesfor the pg
=1.694caseaqualitatively similar shockmotionmaybe
notedin pastexperimentainvestigationsThe Schlieren
picturesin figure 14 are from the experimentof C.A.
Hunter of NASA Langley ResearchCenterfor a 2-D
convergent-divergentnozzle(seeHunter1998[10], and
Zamanetal. [1] for furtherdetails). Compareor exam-
ple, the picturesin figures14(a),(b) and(c) with frames
1,2 and4 of figure9.

Ther.m.s. pressurdluctuationamplitudeswverecom-
putedfrom the dataon the centerlineof thenozzle.The
resultsare shaovn in figures15(a)and (b) for the cases
of the 3rd harmonic(stage?) andfundamenta(stagel),
respectiely. Thethroatis locatedat anabscissaalueof
0 while the nozzleexit is at 1. First, in figure 15(b), it
canbenotedthatthereis a pressureanti-nodesomeavhat
downstreanof the throatwhile a nodeexists somavhat
downstreanof the exit. This clearly indicatesthe pres-
enceof aone-quartestandingwvave within thedivergent
section. Similarly, a three-quartestandingwave is ob-
sened for stage(2) in figure 15(a). The resultsof fig-
ure 15 agreewith andconfirmthe presenc®f the stand-
ing wavesthatwere conjecturedrom experimentalevi-
denceasdiscussectarlier
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Figurel2: DetailednumericalSchliererdatafor thecase
at4 psig(stage?).
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Figurel3: Detailedflow-field u-velocity datafor thecase
at4 psig(stage2).

Figurel4: Schlierempicturesof theinternalshockstruc-
turefor fundamentatesonancatMj = 0.71for arectan-
gularnozzle,from the experimentof Hunter[10].

A recentexperimentalnvestigatiorin connectiorwith
flow meteringusingVenturinozzles[11] is worth men-
tioning here. In this work, flow unsteadinessvas ob-
sened at relatively low pressure-ratiosTime-averaged
dataon ‘recoverytemperaturetlearlyexhibitedthepres-
enceof one-quarterthree-quarteand even five-quarter
standingwaveswithin the divergentsection. (In private
communicationthe first authorof [11] confirmedthat
the flows were accompaniedby emissionof tones. Un-
fortunately frequencieswere not measuredhat would
have allowed a comparisonwith the correlationequa-
tions of Ref. 1 anda determinationf the unsteadiness
wasindeedthe samephenomenoasstudiedhere.)

In figure 16, thepressuremplitudesareshawn for the
fundamentataseat a giveninstant. The acousticradia-
tion patternattheresonancé&equeng is capturedn this
plot. It is notevorthy that the patternis similar to that
obsenedwith ductacousticresonanceFor example,in
thework of [12] thepressurdluctuationsfor aresonating
cylindrical ductwerecalculated While theinternalpres-
sureamplitudesapparentlyshovedstandingvaves(their
Fig. 13), the externalradiationpatternappearedimilar
to thatobsenedhere.

Finally, theeffect of Reynoldsnumberis examinedon
the resonancdrequeng. In the experimentsthe reso-
nancetendedto disappeamwith increasingpressurera-
tio (or M;). Thus,the highestpressure-ratiq 20 psig
case)was chosenfor this Reynolds numbersensitvity
study Computationsvereperformedor threeadditional
Reynolds numbers,calculatedon the basisof acoustic
speedin the ambientanda length-scaleof 1 inch. The
solid curve, representinghigh Re’ calculationwas ob-
tainedin the sameway as describedabove (by setting
1 to zero; seeSection3). This involved boundarylayer
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with growth only dueto ‘numericalviscosity’. Thelatter
dependson grid size and other parameter®f the com-
putationalprocedure.An estimateof the numericalvis-
cosityis not straightforvard,however, thecorresponding
Reynoldsnumberis thoughtto be quite high. Thelower
Reynolds numbercaseswere obtainedby settingcorre-
spondinglyhigher valuesof u. Note that the nominal
Reynoldsnumberbasedon molecularviscosityis about
600,000.

The power spectraldensityof the fluctuatingpressure
is shawvn in Fig. 17. For brevity, thesecalculationsvere
performedonly for limited lengthsof time so that the
resolutionin Fig. 17 is not asrefinedasin Figs. 5 and
6. Theordinatein Fig. 17 hasa log scaleandthusthe
higherharmonicsappeaprominently It is clearthatthe
resonanceersistsover a wide rangeof Reynoldsnum-
bersandfor high andmoderateRe’s, their effect on the
resonancdrequeng is quite small (about2% at maxi-
mum). Only at the lowestRe the oscillationdisappears.
Note that a deceasindRe is equivalentto a thickening
of the boundarylayer. Thetrendis thereforeconsistent
with experimentalobsenationthatthe resonancés sup-
pressedupontripping of the boundarylayer. However,
the exact mechanisnof the tripping effect remainsun-
clear[1] andfurther study including computationaljs
neededo obtainafull understanding.

5 Discussion and Summary

It is importantto discusscertain pastwork that ad-
dressedhesameor similarunsteadyphenomenonin the
work reportedin [13], a simulationof the experiments
of [14] wasperformed. The experiment[14] reporteda
periodicunsteadyflow througha two-dimensionaltran-
sonicdiffuser’. Thefloor of thediffuserwasflat, thetwo
side-wallswereparallelandthetop wall wascorvergent-
divergent. An examinationof the frequeng datafrom
this experiment(seeRef. [1] for full discussion),led
to the inferencethat the obsered unsteadinessnust
be of samemorphologyas of the subjectphenomenon.
Of relevancehereis the fact that the numericalsimu-
lation of [13] appearedo have capturedthe flow un-
steadinesguite well. A two-dimensional,compress-
ible, Reynolds-areragedNavier-Stokes (RANS) solver
wasusedtogethemwith atwo-equatiorturbulencemodel.
The computationwas startedwith aninitial statedeter
minedfrom quasi-one-dimensionahalysis.After suffi-
cienttime stepsthe flow settledinto an oscillatory pat-
tern. The period of oscillation for some of the cases
agreedwell with thedataof [14]. However, it wasfound
that the diffuser flow field and the frqueng/ were very
sensitve to thelocationof thedownstreanmboundary

Anothernumericalwork [15] broughtto the authors’
attentionalso merit a discussion. This work concerned
flow meteringusing Venturi nozzles. Numericalsimu-
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Figure 15: Time-averaged(r.m.s.) amplitudeof fluctu-
ating pressuralongcenterlineof nozzle;(a) po = 1.278
case(stage?); (b) po = 1.694case(stagel).
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lation was conductedfor flows similar to that of [11],

discussedn connectiorwith Fig. 15. An axisymmetric,
unsteady compressibleNavier-Stokes solver was used.
For certainconditions,a quasi-periodidluctuationwas
obsenedin the computediow field. Fromthe datapro-

videdin [15] it wasnot possibleto determineif the fre-

guenciedollowedthecorrelationequation®of [1]. How-

ever, the symptomsappearedsimilar and the unsteadi-
nessseemedikely to be of the sameorigin asthe tran-
sonicresonance.

Thus, to the authors’ knowledge, at leasttwo past
numericalworks also likely capturedthe transonicres-
onancephenomenon. The apparentability to capture
the phenomenorby ‘any’ unsteadycodeis surprising
becauseexperimentallyit is known to be very sensi-
tive to operatingconditionsespeciallyto perturbations
in the upstreamboundarylayer (seediscussionof Fig.
17). Exceptfor the similarity that all threesimulations
(present[13] and [15]) involved axisymmetricor two-
dimensionalkodes differentalgorithmsand procedures
were followed. The upstreamboundarylayer in the
presensimulationwas‘laminar’, thatin [13] wasappar
ently turbulent. We move on by notingthatmary aspects
of the phenomenong.g., the effect of boundarylayer
tripping, have remainedar from completelyunderstood.
Furthemumericaktudyhasthepromiseof advancingthe
understandingandthisis plannedor thefuture. Follow-
ing is asummaryof theresultspresentedn this paper

TheunstructuredCE/SENavier-Stokes/Eulersolveris
appliedto the transonicresonancgphenomenon. It is
clearthatthe essencef the phenomenotis capturedoy
the computation. The frequeng of the resonanceand
its variationwith pressure-rationcluding a stagejump,
arecapturedquitewell. A significantcontritution of the
presentstudyis the resultsclearly shaving the charac-
teristic standingwaves (Fig. 15). This confirmedthat
the underlyingmechanismis similar to that of acoustic
(no-flow) resonancef a ducthaving oneendopenand
the otherclosed. This wasconjecturedn the earlierex-
perimentalwork [1] but the standingwavescould not be
measuredvith confidencéecausef probeinterference.

Thesuccesi capturingthecharacteristicsf thephe-
nomenorattestgo the validity of thenumericalscheme.
Otheradvantageof the CE/SEschemdncludethe ‘ef-
fortless’ implementation(no specialtreatmentgrid re-
finement,etc.), the simple but effective NRBC and its
shock-capturingapability

As statedn Section3, mostof theresultsin this paper
wereobtainedby ‘inviscid’ calculationsfor the internal
flow. It canbe viewed as a Navier-Stokes solution at
a high Reynolds numberwith underresolhed boundary
layer; the computediow involved a boundarylayerdue
to numericalviscosity only. Boundarylayer separation
following theshockcanbeobsenedin figures10and13.

11

Figure 16: Acousticradiationfor the fundamentatase.
(10psig)

However, onemay not expectthatthe detailsof the sep-
aratedflow andthe separatiorbubblewould be captured
faithfully by sucha procedure Onthe otherhand,users
of the CE/SEmethodhave demonstrateds capabilityto

captureshockstructurerelatively faithfully. Thus, one
may infer that the shockandits unsteadinesgossibly
dueto flow separationarethe primaryingredientf the
transonicresonancehenomenorandthatthe exact de-
tails of the separatedboundarylayer are hererelatively

unimportant.
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